x^2+16x-133=10

Simple and best practice solution for x^2+16x-133=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+16x-133=10 equation:



x^2+16x-133=10
We move all terms to the left:
x^2+16x-133-(10)=0
We add all the numbers together, and all the variables
x^2+16x-143=0
a = 1; b = 16; c = -143;
Δ = b2-4ac
Δ = 162-4·1·(-143)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{23}}{2*1}=\frac{-16-6\sqrt{23}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{23}}{2*1}=\frac{-16+6\sqrt{23}}{2} $

See similar equations:

| 3(x+1)=5+3x-2 | | x-7+3x=5 | | 0.5x+2=2*(x)^0.5 | | 6x+2x+9=12x-4x+7 | | 5(x-3)/2=2x-3 | | 2x-4+4x=-(x-14) | | -14/5=-7y | | (-8+p)4=2(2p-16) | | 4m^2+6m-3=0 | | 3v^2-441=0 | | (6x^2)-26x+22=0 | | 12(10x+15)−32=2x+6+3x | | 7/8x=3/8=3/8 | | ​j/​2+7=12 | | 2d^2=-4-5d | | -3(x-1)=3(-x+1) | | 4n–2n=18 | | 131=221-x | | −8=4x−5 | | 13p+3=16 | | 6+5k=9k–10 | | —2x—2=—2 | | -w+160=2 | | 8(j−4)=2(4j−16) | | 4v8=2v+8 | | 4v+8=16 | | 3x4+24x=0 | | 39.99+4x=44.99+5x | | 3=3x/3.3 | | Y^2=8y-25 | | 6x+3/10-5x=-2/5 | | $75.00+x=$80.45 |

Equations solver categories